Flow Modeling

for Popcorn Ash Capture

Kevin Linfield, Ph.D., P.E.

klinfield@airflowsciences.com 734-525-0300 x 38

Airflow Sciences Corporation

www.airflowsciences.com

Popcorn Ash Formation & Capture

Small particles exit the burners; how do they get so big?

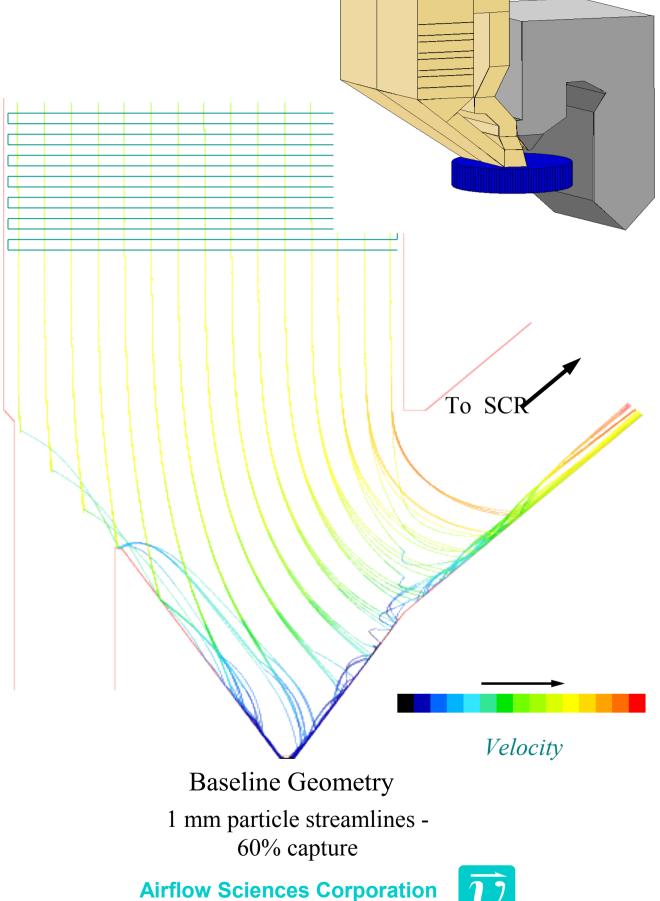
- Combustion plays a key role
 - FEGT
 - Burner, OFA, and furnace flow patterns
- Agglomeration of soft ash particles in the upper furnace
 - Particle collisions during flight
 - Tumbling in flow recirculation regions
 - Build up on tube surfaces; re-entrainment during soot blowing or by gas stream
 - Assuming you cannot avoid popcorn ash exiting the boiler, capturing it *before* it gets to the SCR is the only option
 - Engineering design procedure includes some, if not all, of (i) field testing, (ii) lab analysis, (iii) flow modeling

Popcorn Ash Characteristics

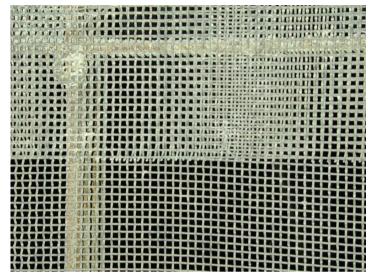
Several features of popcorn ash make it difficult (but not impossible) to predict its behavior in a gas stream

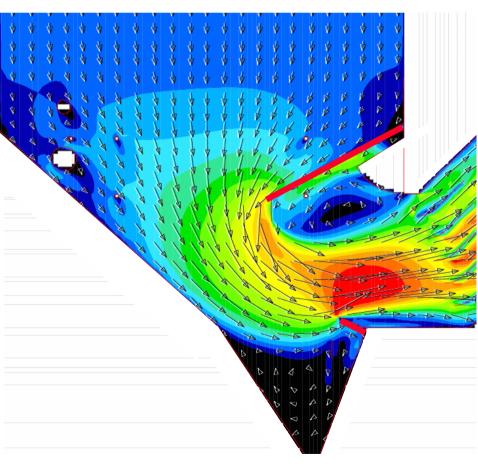
- Light weight (Specific gravity <1.0)
 - Difficult to capture by mechanical separation
- Irregularly shaped
 - Unique drag coefficient
 - Random rebound behavior
- Determined by Lab Analysis
 - Size distribution
 - Specific gravity
 - Drag coefficient
 - Rebound characteristics

Field Testing


- Performed upstream and downstream of the economizer hopper
- Tests performed include
 - Velocity traverse
 - Flow distribution
 - Integrated mass flow rate
 - Temperature distribution
 - Isokinetic ash sampling
 - Ash flow rate
 - Size distribution
 - Provide samples for lab analysis
- Baseline testing
- Post-installation testing

Flow Modeling


- Computational Fluid Dynamics (CFD) model of economizer hopper region
- Model used to predict
 - Velocity patterns
 - Ash particle trajectories
 - Capture efficiency of economizer hopper
 - Pressure loss
 - Erosion potential
- Track ash particles through the economizer hopper region
- Calculate hopper capture efficiency for various particle sizes
- Use model to evaluate wide range of design options



Economizer Hopper Modifications

Aerodynamic baffles

- Mechanically separate large ash particles; send them to the hopper
- Baffles located above and within the economizer hoppers
- Pro
 - Consistent capture over time
 - Consistent DP over time
- Con
 - Pressure loss (up to 2 IWC)
 - Performance dependent on hopper region geometry
 - Potential erosion of downstream structure, instrumentation (O₂ probes)

Screens

- Filter out large particles using wire mesh
- Locate in inlet ductwork or at SCR inlet face
- Pro
 - Design for specific size capture
 - Lower DP than baffles (<1 IWC)
- Con
 - Inconsistent DP due to pluggage over time
 - Inconsistent capture efficiency due to erosion
 - Maintenance required to clean and repair

Case Study

- Southeastern utility
 - ~700 MW tangentially fired unit
 - Screen at economizer outlet replaced every 6 months
- CFD modeling performed
 - Baseline: 78% of 5 mm particles captured
 - With baffles: 100% of 5 mm particles captured
- Baffles installed with SCR spring 2004
 - Screen retained
- Inspection occurred fall 2004
 - Screen totally eroded
 - Negligible quantity of popcorn ash on catalyst
 - Estimated 99.9998% popcorn ash captured in economizer hoppers
 - Attributed to presence of baffles

