Primary and Secondary Air Measurement

Clearwater Clean Coal Conference June 6, 2010

Michael Higgins, P.E.

Senior Engineer mhiggins@airflowsciences.com

Airflow Sciences Corporation

Livonia, Michigan www.airflowsciences.com

Why measure?

- Need to control boiler flow rates properly for safe, efficient operation with minimized emissions
 - Save \$ for every pound of fuel saved
 - Save \$ for every pound of emissions reduction
 - Save \$ for reduced maintenance expenses

Measurements

- Mass flow (kpph) = density (lb/ft³) * flow volume (ACFM)
 - ➢ Total air flow
 - Temperature
 - Pressure
- PA & SA are key for boiler control
- Flow split (compartments, OFA, per mill) are important
- Other flows may be of interest (seal air, inleakage, moisture, ...)

Methods

- Orifice
- Venturi
- Airfoils
- Pitot
- Hot wire
- Microwave
- Other

Create flow blockage; measure DP across it; flow rate is proportional to \sqrt{DP}

Instrumentation measures flow velocity and temperature; often multiple probes per duct; calculates flow rate based on duct area; output is fed into control system

Venturi

Allows
 pressure
 recovery
 compared
 to orifice

* Airfoils

Methods

- Orifice
- Venturi
- Airfoils
- Pitot

- Single measurement per duct
- Usually multiple measurement points to obtain duct average; pressures may be tee-d together
- Hot wire
- Microwave
- May use multiple measurement points to obtain duct average

• Other

Calibration

- System calibration via duct traverse
 - Need good test ports
 - ▶ EPA Method 2, 2F
 - S-probe or 3D probe

- By vendor
- By user
- Calibration frequency
 - System annually
 - Component varies by vendor

Challenges

- High pressure (+40 inches of water)
- Hot (650-750 F)
- Particulate
 - Erosion
 - Pluggage
 - ➢ Fouling
- Dampers
- Limited space
- Velocity patterns
- Temperature gradients

Limited space for test ports and calibration – Airfoils

Limited space for hot wire install – mill inlet

Velocity Patterns

Velocity Patterns

Outboard mills have most skewed velocity

- Velocity Patterns
 - Flow uniformity
 - Directionality

Temperature gradients – impact flow density

Close-up, Mill C $\Delta T = 80 F$

- * All good methods, but have design considerations
 - Orifice
 - Venturi
 - Airfoils
 - Pitot
 - Hot wire
 - Microwave
 - Other

Add to system DP; susceptible to pluggage, transducer drift, velocity profile

Susceptible to pluggage, fouling, erosion, drift velocity profile and directionality; can be removed for repairs and calibration

Summary

- * Many options for PA and SA measurement
- * All can work well, if properly installed
 - Good flow distribution and directionality can be critical
 - Uniform temperature important
 - Purging systems to avoid pluggage
- * And if properly maintained
 - Inspection for erosion, fouling
 - Regular and accurate calibration of system and components
 - Need good test ports
 - Did I mention you need good test ports?
 - 3D probe better than S probe

