Gas Accumulation Potential & Leak Detection when Converting to Gas

Coal to Gas / PCUG Conference Chattanooga, TN October 29, 2013

Robert G. Mudry, P.E. Airflow Sciences Corporation

Introduction

• Coal to gas conversion - safety concerns

- Gas leak within plant can result in explosive concentration
- Build up of gas can occur if ventilation is inadequate
- Older coal plants are not necessarily well-ventilated
- Monitors need to be present to detect leaks before an accident happens
- Reaction plan has to be devised to deal with potential leaks

• Case study - background

- Conversion of up to 5 boilers (~50 MW)
- Site testing for gas dispersion not practical
- Design requirement is to proactively consider and design for potential leaks

Methodology

- Field testing to assess current ventilation
- Computational Fluid Dynamic (CFD) flow modeling of boiler internal flow patterns
- Simulate gas leaks and worst case scenarios
- Design ventilation system, identify monitor locations, test out the reaction plan

Design Process

I. Natural Gas Properties -> Ventilation Criteria

- A) Buoyancy vs. air.
- B) Lower explosive limit (LEL).

I. Leak Characterization and Detection.

- A) Leak locations (failure mode).
- B) Leak size (flow rate) estimation.
- C) Detection level.
- D) Sensor placement.

I. Ventilation Considerations.

- A) Fan placement.
- B) Vent placement.
- C) Temperature management.

I.Reaction Planning.

- A) System automation.
- B) Reaction sequence.

Natural Gas Properties

- Composition:
 - Varies by source.
 - 90-100% Methane and Ethane mixture (CH_4, C_2H_6) .
 - Simulate as 100% Methane (CH₄)
- Buoyancy vs. Air:
 - Molecular weight 16-18 vs. 28 for air (g/mol).
 - Natural gas rises.
- Flammability Limits:
 - Methane lower explosive limit (LEL) = 5% volume fraction (2.8% mass fraction).
 - Ignition may occur above this concentration if a source is present!

Leak Characterization and Detection

Leak Locations:

- Determine potential failure modes and locations.
- Flex hoses, burners, unions, etc.
- Where is a leak likely to occur?
- Where is the worst place for a leak to occur?

Leak Size Estimation:

- Estimate leak flow rates based on line typical line pressures, hole/gap sizes,etc.
- Orifice-type (sonic limit) handbook calculations.

• Detection Limits and Sensor Placement:

- Detect and alarm at some fraction of LEL.
- Where to place sensors for early / critical detection?

Case Study – Geometry Overview

Case Study – Geometry Overview

Flow Modeling Basics

• Physical Flow Modeling

- Laboratory scale models
- Wind tunnel testing

Physical Modeling Species Tracking

- Tracer gas (quantitative)
- Smoke visualization (qualitative)

Physical Modeling Species Tracking

- Tracer gas (quantitative)
- Smoke visualization (qualitative)

Flow Modeling Basics

• CFD Flow Modeling

- Virtual models
- Complex physics

CFD Modeling Species Tracking

- Concentration plots (quantitative)
- Flow animations (qualitative)

 Image: t = 564sec.
 t = 705sec.
 t = 846sec.

CFD Modeling Species Tracking

- Concentration plots (quantitative)
- Flow animations (qualitative)

Case Study – Model Overview

Velocity Path Lines - Isometric View 1

Normal venting operation (fans on low speed). 30 sec. after start of leaks (leaks at 10 locations). • \oplus Time = 30 sec. 0.0 3.0 6.0 9.0 12.0 > 15.0 **Airflow Sciences** Velocity Magnitude (ft/s) Corporation

Velocity Path Lines - Isometric View 2

Low velocity regions (< 1 ft/s)

Leak path lines colored by mass fraction - Isometric View 1

- Normal venting operation (fans on low speed).
- 30 sec. after start of leaks.
- 100% LEL = 2.8% Mass fraction
- 25% LEL = 0.71% Mass fraction

Time = 30 sec.

 \oplus

 \oplus

0.00 0.40 0.80 1.20 1.60 > 2.00 Gas Mass Fraction (%)

Iso-surface of Mass Fraction ≥ 25% LEL – Isometric View 1

• Normal venting operation (fans on low speed).

 \oplus

- 30 sec. after start of leaks.
- 100% LEL = 2.8% Mass fraction
- 25% LEL = 0.71% Mass fraction

Sensors must be placed within this region to detect a leak at 25% LEL, 30 sec. after leak occurs.

 \oplus

Time = 30 sec.

0.00 0.40 0.80 1.20 1.60 > 2.00 Gas Mass Fraction (%)

Iso-surface of Mass Fraction ≥ 100% LEL – Isometric View 1

- Normal venting operation (fans on low speed).
- 30 sec. after start of leaks.
- 100% LEL = 2.8% Mass fraction
- 25% LEL = 0.71% Mass fraction

Ignition could occur in this region! (Concentration ≥ 100% LEL)

Time = 30 sec.

 \oplus

 \oplus

0.00 0.40 0.80 1.20 1.60 > 2.00 Gas Mass Fraction (%)

Iso-surface of Mass Fraction ≥ 25% LEL – Isometric View 1

Normal venting operation (fans on low speed). 260 sec. after start of leaks. • 100% LEL = 2.8% Mass fraction • • 25% LEL = 0.71% Mass fraction \oplus \oplus Gas concentrations > 25% LEL reaching roof fans Time = 259 sec. 1.60 0.00 0.40 0.80 1.20 > 2.00 **Airflow Sciences** Gas Mass Fraction (%) Corporation

Velocity Path Lines – Isometric View 1

- Full venting operation (fans on high speed).
- Side roll-up doors opened.
- 500 sec. after start of leaks.

 \oplus

Airflow Sciences Corporation

E

(A)

Iso-surface of Mass Fraction ≥ 25% LEL – Isometric View 1

Case Study – Reaction Sequence

Typical Leak Reaction Plan (Timeline)

Case Study – Reaction Sequence

Evolution of iso-surface (mass Fraction \geq 25% LEL) over full reaction sequence.

10 Simultaneous Leaks

Case Study – Reaction Sequence

Evolution of iso-surface (mass Fraction \geq 25% LEL) over full reaction sequence.

2 Leaks at Center Boiler

Conclusions

- Design parameters can be developed to minimize safety hazards
 - Allowable concentrations
 - Response times
- Equipment should be chosen to provide flexibility
 - Fans, VFDs
 - New inlets, heating
 - Detection instrumentation
 - Dampers / actuators
 - Reaction plan, control system

- CFD modeling can be used to design the system
 - Perform "what if" studies of leak locations, reaction event sequence and timing
 - Examine air velocity patterns at various fan settings and venting options
 - Quantify natural gas concentrations versus time for numerous designs
 - Determine final design geometry and operating parameters

Questions?

