Integrating Quench Modeling into the ICME Workflow

Andrew Banka, P.E. Jeffrey Franklin, Ph.D., P.E. William Newsome, Ph.D.

Presentation Outline

ICME Link (Materials Engineering) Specific modeling type Approach for model development **Experimental data collection** Data collection procedure Review of experimental results Future model development

Materials Engineering

 Many factors are important to successfully design a material for a particular use

Heat transfer can have an important impact

- Heat treating is especially important with metal alloys
 - Quenching operations frequently used
 - Quenchant with phase change during heat treatment is an important process
 - Existing numerical models are not sufficient

What Type of Model?

Heat transfer model
Characterize energy movement
Focus on surface heat flux rates

Model Access

Computer Aided Engineering (CAE)
 Path through commonly used tools
 Leverage existing technologies
 High end work stations
 "Reasonably" accessible computer hardware
 Avoid super computer requirements

Computational Fluid Dynamics

CFD Collection of numerical techniques Characterize fluid mechanics and heat transfer

What Physics are Important?

Bulk fluid motion in quench tank

Large length scale

What Physics are Important?

Surface Boiling Small length scale

Balancing Choices Made

- Resolve the quench tank bulk fluid motion
 - Propose general motion is not significantly impacted by local surface boiling. Especially when tank is agitated.
 - Propose using established "single phase" CFD techniques to characterize this motion.
- Vapor due to phase change only impacts surface heat transfer while on or near heat transfer surface.

Improve standard CFD heat transfer techniques

Overall Modeling Approach

Leverage existing CFD technology Methods work well for bulk fluid motion -> Engineers are familiar with tools Transient simulations of industrial equipment is common practice today Develop a new sub grid scale wall model Similar to those currently used by turbulence models Incorporate sub grid scale phase change physics

into model

Wall Model Relationship

Standard CFD convective heat transfer

Needs to include physics for phase change (boiling)

Experimental Approach (Quasi-Steady State Flow Boiling)

TCs to measure temperature and heat flux

Reorient test section for different flow direction or surface normal

> Heat Flux to Wetted Surface

Airflow Sciences Corporation

Quenchan

-0

Heater Block

Copper
20 cartridge heaters
9000 Watts total input
TCs pass through back side

Heater Assembly Design

Settling chamber to provide good flow quality Heated surface on side of test channel (omitted for clarity) Remaining side of test channel are glass for photo/observation

Full Test Fixture Layout

Test Fixture In Lab

Flex Lines

Circulation Pump Surge Tank

Support Cage

Heater Box

Settling Chamber

-

Heater Assembly

Copper block support cradle load springs

Test section load springs

Test section

Experimental Data Collage

Observed Heat Flux Variation

Future Work

Finish collection of experimental data
Compile physics based relationships to estimate heat transfer coefficient
Implement relationship into a CFD environment

Benchmark resulting simulation tool

Acknowledgment

 This material is based upon work supported by the United States Air Force under Contract No. FA8650-12-C-5110.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force.

