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Introduction
� Why is Fluid Flow Important to Industrial Equipment?

• Performance 
� Flow uniformity
� Sorbent injection
� Ash capture / build-up

• Operating costs
� Pressure drop
� Erosion
� Corrosion
� Sorbent Usage

� Applications
• Design of new equipment
• Retrofit of existing equipment
• Solving operational or maintenance issues
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Airflow Sciences Corporation

Providing engineering services to industry since 1975

Specialize in developing cost-effective

solutions to problems involving
� Fluid flow

� Heat transfer

� Particulate transport

� Chemical reaction

� Aerodynamics
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Airflow Sciences Corporation
ASC engineers apply a variety of 

tools to assess equipment and 

develop improvements
• Computer flow modeling
• Physical flow modeling
• Field testing
• Laboratory testing
• Component inspection
• Specialty test equipment
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Field Testing

� Velocity

� Temperature

� Pressure

� Particulate

� Chemical Species
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Field Testing
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Computational Fluid Dynamics (CFD) 

� Numerical simulation of flow

� Utilize high speed computers and sophisticated 
software

� Calculate flow properties

• Velocity

• Pressure

• Temperature

• Species

• Particle streamlines

Airflow Sciences Corporation
9



© 2015

Computational Fluid Dynamics (CFD) 

� Control Volume Approach
• Divide the flow domain into distinct control volumes

• Solve the Navier-Stokes equations (Conservation of Mass, 
Momentum, Energy) in each control volume
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ESP model with 
10,000,000 cells

Inflow Outflow

Control Volume 
or “Cell”
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Computational Fluid Dynamics (CFD) 

� Many applications:
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Physical Flow Modeling
� Lab representation of geometry

� Typical scale 1:8 to 1:16

� “Cold flow” modeling

� Visualize flow with smoke

� Simulate ash deposition

� Measure flow properties

• Velocity

• Pressure

• Tracer gas

• Dust/Particles
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Physical Flow Modeling

Airflow Sciences Corporation
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Typical 1:12 scale 
physical model

PJFF 
Compartments

Turning vanes

ID Fan Inlet

SDAs               Air Heater Outlet
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Fabric Filter Flow Modeling

� Uniform velocity distribution and equal balance 
between compartments

� Pressure loss
� Avoid bag erosion
� Ash deposition
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ESP Flow Modeling

� Flow distribution

� Flow balance between cells

� Pressure loss

� Thermal mixing

� Gas conditioning

� Ash deposition

Airflow Sciences Corporation
16



© 2015

ESP Flow Modeling
� Hopper sweepage
� Very light particles (sorbent), re-entrained in the flow 

during the rapping process
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SCR Flow Modeling

� Uniform velocity distribution
� Thermal mixing
� NOx profile and mixing
� Ammonia injection
� Pressure loss
� LPA capture
� Ash deposition
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Mercury / SO3 Reduction

� Injection upstream of FF or ESP
• Activated carbon

• Lime, Trona, SBC, etc.

� Maximize uniformity at AH/FF/ESP

� Maximize residence time

� Uniform injection
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Sorbent Injection

� Sorbent Injection Modeling: The Process
• Review plant drawings and operating conditions

• Develop 3-D CAD model of the model domain 
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Sorbent Injection

� Several CFD techniques to analyze particulate behavior.  The 
choice depends on factors including; 
• Particle loading

• Particle size

• Particle density

• Turbulence

• Gas velocity

Airflow Sciences Corporation
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Sorbent Injection

� Modeling Techniques
• Lagrangian

o Model particles directly

o Forces on each particle calculated (aerodynamic drag, gravity, impacts, acceleration)

o Commonly used for: flyash, LPA, erosion studies

• Eulerian
o Model particles as a gas

o Applicable for very small particles (<50 µm)

o Commonly used for: sorbent injection modeling

• Fully-Coupled Two-Phase
o Combination of Eulerian and Lagrangian, where influence of the particles on the gas 

stream is accounted for

o Solved iteratively with many, many particles tracked

o Applicable for gas streams with very high particle loading or significant particle density

o Commonly used for: coal flow in a pulverizer or coal pipe, fluidized bed

� Mesh geometry and quality is critical for each
Airflow Sciences Corporation
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Sorbent Injection

� Sorbent Injection Modeling: The Process
• Discuss the design parameters and restrictions regarding the 

injection lances (location, number of lance, etc.)

• Perform a baseline flow simulation with the initial injection grid 
geometry

Airflow Sciences Corporation
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Sorbent Injection

� Sorbent Injection Modeling: The Process
• Issue a report with details of the flow and sorbent distribution 

throughout the model domain

Airflow Sciences Corporation
25

Gas Velocity PAC Injection Concentration
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Sorbent Injection

� Sorbent Injection Modeling: The Process
• Particle residence time and sorbent uniformity at the target 

planes are presented
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15-20% is the industry standard for uniformity
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CFD Applications

� Example: Carbon Injection with Multiple Air Heaters

Airflow Sciences Corporation
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Gas Velocity PAC Injection Concentration PAC Injection Balance
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Physical Flow Modeling Applications
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Physical Flow Modeling Applications
� Lab representation of lance 

geometry

� Sorbent injection modeled using 
tracer gas

� Gas analyzer used to measure 
distribution downstream

Airflow Sciences Corporation
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Modeling Comparison: CFD/Physical

Airflow Sciences Corporation
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Target CFD Physical
DSI Uniformity – Target Plane 1 6.9% 3.9%

DSI Uniformity – Target Plane 2 9.1% 7.5%

ACI Uniformity – Target Plane 1 11.4% 12.7%

� Example data comparison from recent projects
• Data comparable between the two methods

• Tracer gas testing for other applications (NOx distribution, 
NH3 injection) confirms good agreement
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Modeling Comparison: CFD/Physical
CFD Physical

$ $$

Multiple configurations
investigated simultaneously

One test at a time

Can include lance details Lance does not scale (2” dia
lance not modeled as 1/6” 

dia lance)

More data points Discrete data grid for 
analyzing mixing

Assumptions related to 
meshing or algorithm

Assumptions related to 
scaling and similarity

Airflow Sciences Corporation
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Future Considerations

� Typical Parameters to Consider:
• Do you have enough lances?

• Residence time compared to duct size.

• Is your lance configuration well-suited for the duct aspect 
ratio?

• Can the plant fans handle dp of a static mixer?

• Substantial internal trusswork?

• You don’t necessarily want the most uniform velocity 
profile at the injection plane.

Airflow Sciences Corporation
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Future Considerations

� Do you have enough lances?

� 40-45 square feet per lance is a good guideline.
� Adding more lances after contract award is a tough pill to swallow.

Airflow Sciences Corporation
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Future Considerations

� More Lances  = Better Uniformity

Airflow Sciences Corporation
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Future Considerations

� More Lances  = Better Uniformity
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Cases 1 and 2, the number of lances had to be doubled to approach the uniformity goals.  
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Future Considerations

� More Lances  = Better Uniformity
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Cases 1 and 2, the number of lances had to be doubled to approach the uniformity goals.  

The lance configuration was fixed for Case 3, but the addition of a low dp static mixer proved 
effective at significantly improving the uniformity.
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Future Considerations

� Is your lance configuration well-suited for the duct 
aspect ratio?

Airflow Sciences Corporation
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Future Considerations

� Is your lance configuration well-suited for the duct 
aspect ratio?
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Preferred Orientation
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Future Considerations

� Mixer?

� Pressure loss limitations

� Local or global mixing?

� Truss location and design

Airflow Sciences Corporation
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Future Considerations

� Modeling vs. Real-Life
• 15%-20% RMS is the industry standard for “uniform” 

distribution

• RMS required may depend on what is downstream
FF > WFGD > ESP

• How does this compare to actual system effectiveness, 
“Will I meet my guarantee?”

• A database of correlation data could be developed based 
on the many projects that have already been completed in 
order to give modelers, injection companies, and end 
users confidence regarding the system performance.

Airflow Sciences Corporation
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Conclusions

� Fluid dynamics and thermodynamics have significant 
impact on the performance of power plant equipment

� CFD/Physical modeling is used to optimize the 
position and arrangement of sorbent injection lances

Better uniformity        Less sorbent usage          Reduced operating cost

Airflow Sciences Corporation
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Questions?

Matt Gentry

734-525-0300

mgentry@airflowsciences.com
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