

Aerodynamic Drag Reduction of Open-Top Coal Cars in Unit Train Operation and Impact on Train Fuel Consumption and Economics

National Coal Transportation Association Spring General Conference 26 – 29 April 2015 Litchfield Park, Arizona

James Paul, P.E., Senior Engineer Airflow Sciences Corporation, Western Region Office Carmel, California USA

Aero Transportation Products, Inc. Independence, Missouri

Airflow Sciences Corporation Livonia, Michigan

30% scale baseline hopper car models in Lockheed Georgia Company wind tunnel at 5° yaw.

The current study involved two primary tasks:

- Identify and test candidate retrofit coal car aerodynamic drag reducing devices and rank the devices by
- •) Effectiveness
- •) Impact on train fuel usage
- •) Return on investment
- 2) Build prototype drag reducing devices and test them at full scale to verify durability and fuel savings

16% Scale Gondola Car Models in National Research Council of Canada 9 M Wind Tunnel (8 car train)

Coal Car Aerodynamics

- Impact of Candidate Aerodynamic Devices on Train Fuel Economy
- Conclusions and Recommendations

30% Scale Model High-Side Gondola Car, No Internal Bracing, Lockheed Georgia Company Low Speed Wind Tunnel

Definition of North American Coal Car Fleet

Summary of North American Coal Car Fleet Population and Ownership

Classifications of Aerodynamic Modifications for Open-Top Gondola and Hopper Cars

- Covers
- Inter-Car Spacing and Gap Fillers
- Internal Baffles
- Underbody

• End Treatments

Car Side Geometry

Image: FreightCar America

Typical Gondola Car

Terminology: It is convenient to group the drag coefficient and cross sectional area together and refer to them collectively as the **drag area**. This eliminates any confusion regarding the selected value for the cross sectional area.

Drag Area = $C_d A (ft^2)$

from: $C_d = D / A q$

where:

- D = Drag Force (lbs)
- C_d = Drag Coefficient (non-dimensional)
- A = Cross Sectional Area of Coal Car (ft²)
- q = Dynamic Pressure of Air = $\frac{1}{2} \Box V^2$
- □ = Density of Air (slugs/ft³)
- V = Air Velocity (ft/sec)

thus: D = [Drag Area] q

Aerodynamic Drag of Train = $(\frac{1}{2} \Box V^2) C_d A$

Where ρ = air density, V = Train Speed, C_d = Drag Coefficient, and A = Frontal

		Dynamic	Aerodynamic Drag of Tra		
Train Sp	eed	Pressure	Loaded	Empty	
(miles/hour)	(ft/sec)	(lb/ft ²)	(lbs)	(lbs)	
0	0	0	0	0	
10	14.7	0.26	1,479	2,287	
20	29.3	1.02	5,914	9,147	
30	44.0	2.30	13,308	20,582	
40	58.7	4.09	23,658	36,589	
50	73.3	6.39	36,965	57,171	
60	88.0	9.21	53,230	82,326	
70	102.7	12.53	72,452	112,055	

8

Aerodynamic drag at 60 miles/hour is 2.25 times greater than aerodynamic drag at 40 miles/hour.

Power Required to Overcome Aerodynamic Drag = $(\frac{1}{2} \square V^2) C_d A V$ Where V = Train Speed

Power required at 60 miles/hour is 3.4 times greater than power required at 40 miles/hour.

Train	Power Required to Overcom	e Aerodynamic Drag
Speed (miles/hour)	Loaded	Empty
	(lbs)	(lbs)
0	-	=
10	39	61
20	315	488
30	1,065	1,647
40	2,524	3,903
50	4,929	7,623
60	8,517	13,172
70	13 524	20 917

Observed Flow Behavior in Vicinity of Open-Top Rail Cars

Calculated Flows and Pressures Along Car Centerline

air from entering car interior.

Car Centerline Velocities and Pressures (with and without baffles); from 3-D CFD Model.

Airflow Sciences Corporation

Coal Car Aerodynamics: End Treatments

Wind Tunnel Test of Airfoils

End Treatments on Pullman Standard Pegasus Car

End Treatments on 30% Scale Wind Tunnel Model

- Adding fairings to the tops of the vertical end walls has been shown to reduce aerodynamic drag of empty cars from 16% to 20%.
- The level of drag reduction depends upon the sophistication of the addon designs.

Wind-Average Yaw Angle:

- To rank the effectiveness of the drag reducing devices, the concept of Wind-Averaged Drag (WAD) Coefficient is introduced.
- The wind-averaged drag coefficient represents a typical yaw angle based on average wind speeds and train routes in North America. It is defined in SAE Publication J1252.
- The average North American train speed is 43 miles/hour (70 km/hr). The average North American wind speed is 6.8 miles/hour (11 km/hr).
- This produces a wind averaged yaw angle of between 5° and 6° from which the windaveraged drag value can be determined.

	Wind-Averaged		
Drag	Drag Area	Drag Area	
Reduction	Reduction	Reduction	
Method	(ft ²)	(%)	
mpty Hopper Cars	2		
1. Flat Covers	39.3	51.7%	
2. Full-Height Baffles	34.3	45.1%	
3. Smooth Sides	20.8	27.4%	
4. Partial Covers (open center)	18.2	23.9%	
5. Triangular Baffles	15.9	20.9%	
6. Domed Covers	15.8	20.8%	
7. End Treatments	12.8	16.8%	
8. Rib Caps/Aerodynamic Ribs	8.1	10.7%	
9. Effective Gap less than 10 inches	7.0	9.2%	
10. Cross Bracing	6.7	8.8%	
11. End Enclosure	5.3	7.0%	
12. Side Skirts	4.1	5.4%	
mpty Gondola Cars			
1. Flat Covers	38.2	44.1%	
2. Full-Height Baffles	35.1	40.5%	
3. Triangular Baffles	21.7	25.1%	
4. Domed Covers	19.3	22.3%	
5. Partial Covers (open center)	17.7	20.4%	
6. End Treatments	17.2	19.9%	
7. Smooth Sides	13.4	15.5%	
8. Cross Bracing	8.2	9.5%	
9. Rib Caps/Aerodynamic Ribs	7.5	8.7%	
10. Effective Gap less than 10 inches	6.0	6.9%	
11. Side Skirts	4.1	4.7%	

Effectiveness of Aerodynamic Drag Modifications on Coal Car Wind-Averaged Drag

Energy and Fuel Usage Calculations (Spread-Sheet Method)

If F(x) = total resistance force acting on train, the energy required to overcome this force is given by the following formula:

Energy Required =
$$E = \int_0^L F(x) dx$$

To determine the energy required for a given train journey, we divide the track into segments and determine the forces acting along each segment:

$$E \approx \sum_{i=0}^{i=N} F_i X_i$$
 where $i = trip$ segment and F_i are the forces acting over segment X_i

Components of Resistive Force Acting on Train:

- Gravity (Elevation Changes)
- Rolling Resistance (Including Journal Bearings)
- Acceleration (F = ma) for starting and speed changes
- Flange Resistance (Curves)
- Aerodynamic Drag

High Speed Unit Train

a. From Mine to Power Plant

				Г,	oray Expanded		0/ of
							% 01
	Resistance Force			(ft-lbs)	(BIU)	(MJ)	lotal
	Elevation Changes			0.0000E+00	0.0000E+00	0	0.00
	Rolling Resistance			2.0094E+11	2.5841E+08	272,437	53.16
	Acceleration:	Starting Resistance		2.9719E+09	3.8219E+06	4,029	0.79
		Speed Changes		3.2860E+10	4.2258E+07	44,552	8.69
	Flange Resistance (Cur	ves)		5.0743E+09	6.5255E+06	6,880	1.34
	Aerodynamic Drag			1.3613E+11	1.7506E+08	184,564	36.02
			Totals:	3.7798E+11	4.8608E+08	512,461	
From Power Pla	nt to Mine						
				Er	nergy Expended		% of
	Resistance Force			(ft-lbs)	(BTU)	(MJ)	Total
	Elevation Changes			1.5036E+10	1.9336E+07	20,385	5.17
	Rolling Resistance			5.4897E+10	7.0597E+07	74,429	18.87
	Acceleration:	Starting Resistance		4.0596E+08	5.2207E+05	550	0.14
		Speed Changes		8.9773E+09	1.1545E+07	12,171	3.09
	Flange Resistance (Cur	ves)		1.3863E+09	1.7828E+06	1,880	0.48
	Aerodynamic Drag			2.1029E+11	2.7044E+08	285,118	72.27
			Totals:	2.9100E+11	3.7422E+08	394,534	

Typical Energy Model Calculation Summary

Airflow Sciences Corporation

b.

Aero Transportation Products						Airflow Sciences Corporation		
ASC Project AT0: Train Fuel Usage Spreadsheet						12190 Hubbard Street		
						Livonia, MI 48150-1737		
Input Variables are Highlighted in Yellow (suggested baseline values are indicated for each variable)						Tel.: 734-525-0300, Fax: 734-52	5-0303	
						Web: www.airflowsciences.com		
Title: Exercise Encourse and Economics Model Insut								
Date:	Example E	nergy and Ecol	ionnes wioder input				s	
	Enter	Suggested		Enter	Suggested		Enter	Suggested
Variable	Value	Baseline Value	Variable	Value	Baseline Value	Variable	Value	Baseline Value
Locomotives								
Number of Locomotives	4	4	Locomotive Make and Model	GE C44-9W	GE C44-9W	Engine Power (HP)	4,400	4,400
Fuel Tank Capacity (gallons)	5,000	5,000	Engine Model	FDL-16	FDL-16	Generator Efficiency (%)	94	94
Locomotive Dry Weight (lbs)	394,000	394,000	Engine Thermal Efficiency (%)	33	33	Traction Motor Efficiency (%)	90	90
Locomotive Weight with Full			Locomotive Drag Area (ft ²)			Propulsion System Efficiency (%)	27.9
Fuel Tank (lbs)	429,450 429,450 at 5.5 degrees yaw angle			118.6	118.6	(engine efficiency x generator efficiency and the second sec	ficiency x moto	r efficiency)
Coal Cars								
Number of Coal Cars in Train	100	100	Coal Car Empty Weight (lbs)	58,000	58,000	Baseline Drag Area (ft ²)	Loaded	55.0
Coal Car Type	Gondola		Coal Car Loaded Weight (lbs)	258,000	258,000	at 5.5 degrees yaw angle*	Empty	86.6
Aerodynamic Modification:	None (Baseline)					Drag Area Reduction (ft ²)	Loaded	0
Per Car Weight Change Due to Aerodynamic M	odification (negat	ive: car weight dec	reases; positive: car weight increases)	lbs)	0	at 5.5 degrees yaw angle	Empty	0
Route								
Distance Mine to Power Plant (miles)	922	922	Number of Starts from Full Stop	4	4	Number of Curves per Mile	0.5	
Elevation Change Mine to Power Plant (ft)			Average Ambient Temperature (°F)	50	50	Average Curvature (degrees)	5	
(enter positive or negative value)	-2,000		Rolling Resistance Coefficient	0.0015	0.0015			
Economic Input								
Freight Through Rate (per net delivered ton)	\$14.00	\$14.00	Diesel Fuel Cost (per gallon)	\$2.18	\$2.18	Number of Round Trips per Year	r per Car	35.0

*Baseline Drag Areas for Locomotives and Coal Cars: these are drag areas at 5.5° yaw (wind averaged drag area):

	Wind Averaged Drag Area			
Car Type	(ft ²)	Reference		
Locomotive: EMD	111.1	AAR R-685, Page 146		
GE	118.6	AAR R-685, Page 151		
Coal Cars: Loaded Hopper	49.2	ASC R-08-ATP-3, Page 112		
Empty Hopper	76.0	ASC R-08-ATP-3, Page 112		
Loaded Gondola	55.0	ASC R-08-ATP-3, Page 112		
Empty Gondola	86.6	ASC R-08-ATP-3, Page 112		

	Position	Drag Area
	(1 = front)	Factor
Locomotive Position-In-Train Drag Area Factors:	1	1.00
drag changes with position in train)	2	0.60
	3	0.49
Density of Diesel Fuel: 7.09 lbs/gallon	4	0.44
-		

Train Energy and Economics Model Input Parameters

For these examples the energy required to transport the empty coal cars back to the mine requires between 60% and 80% of the energy required to transport the loaded cars from the mine to the power plant.

Calculations Based on Energy and Fuel Usage Model:

Freight Through Rate (per net delivered ton)	\$14.00	Diesel Fuel Cost (per gallon)	\$2.18				
High Speed Route 1							
Locomotive Propulsion System Efficiency	11.33	kilowatt-hours/gallon	Energy Exp	ended (Mine to Power Plant kilowatt-hours)	142,324		
Gross Train Weight x Distance (outbound)	12,685,706	gross ton-miles Mine to Power Plant	Energy Exp	ended (Power Plant to Mine kilowatt-hours)	109,572		
Gross Train Weight x Distance (return)	3,465,706	gross ton-miles Power Plant to Mine	Number of F	ound Trips per Year per Coal Car	35		
Fuel Consumed (outbound)	12,560	gallons Mine to Power Plant	Transport Ef	ficiency Outbound (gross ton-miles/gallon)	1,010		
Fuel Consumed (return)	9,670	gallons Power Plant to Mine	Transport Ef	ficiency Return (gross ton-miles/gallon)	358		
Total Fuel Consumed (round trip)	22,231	gallons Round Trip	Transport Ef	ficiency Round Trip (gross ton-miles/gallon)	727		
Gross Train Weight x Distance (round trip)	16,151,412	gross ton-miles Round Trip	Fuel Used F	er Car Per Year (gallons)	7,781		
		Low Speed Mountainous Route					
Locomotive Propulsion System Efficiency	11.33	kilowatt-hours/gallon	Energy Exp	ended (Mine to Power Plant kilowatt-hours)	115,921		
Gross Train Weight x Distance (outbound)	12,685,706	gross ton-miles Mine to Power Plant	Energy Exp	ended (Power Plant to Mine kilowatt-hours)	70,281		
Gross Train Weight x Distance (return)	3,465,706	gross ton-miles Power Plant to Mine	Number of F	ound Trips per Year per Coal Car	35		
Fuel Consumed (outbound)	10,230	gallons Mine to Power Plant	Transport Ef	ficiency Outbound (gross ton-miles/gallon)	1,240		
Fuel Consumed (return)	6,202	gallons Power Plant to Mine	Transport Ef	ficiency Return (gross ton-miles/gallon)	559		
Total Fuel Consumed (round trip)	16,433	gallons Round Trip	Transport Ef	ficiency Round Trip (gross ton-miles/gallon)	983		
Gross Train Weight x Distance (round trip)	16,151,412	gross ton-miles Round Trip	Fuel Used F	er Car Per Year (gallons)	5,751		
		High Speed Route 2					
Locomotive Propulsion System Efficiency	11.33	kilowatt-hours/gallon	Energy Exp	ended (Mine to Power Plant kilowatt-hours)	139,196		
Gross Train Weight x Distance (outbound)	12,685,706	gross ton-miles Mine to Power Plant	Energy Exp	ended (Power Plant to Mine kilowatt-hours)	104,784		
Gross Train Weight x Distance (return)	3,465,706	gross ton-miles Power Plant to Mine	Number of F	ound Trips per Year per Coal Car	35		
Fuel Consumed (outbound)	12,284	gallons Mine to Power Plant	Transport Ef	ficiency Outbound (gross ton-miles/gallon)	1,033		
Fuel Consumed (return)	9,248	gallons Power Plant to Mine	Transport Ef	ficiency Return (gross ton-miles/gallon)	375		
Total Fuel Consumed (round trip)	21,532	gallons Round Trip	Transport Ef	ficiency Round Trip (gross ton-miles/gallon)	750		
Gross Train Weight x Distance (round trip)	16,151,412	gross ton-miles Round Trip	Fuel Used F	er Car Per Year (gallons)	7,536		

Example Output File: Energy Section of Train Energy and Economics Model (Baseline Gondola)

Fuel Usage Calculations:

Comparison of Fuel Measurements to Results of Energy Simulation

Example Output: Economics Section of Train Energy and Economics Model

23 Assumptions: Diesel Fuel Cost: \$3.02/gallon Freight Through Rate: \$18.00/net delivered ton mile Number of Trips per Year per Car: 35

Calculation of ROI for Retrofit Aerodynamic Devices:

To determine the **return on investment (ROI)** associated with the candidate retrofit aerodynamic devices, the following procedure was followed:

Calculate the **fuel savings associated with each device** using the spread-sheet-based calculation procedure. Multiply by the fuel cost to obtain the **savings in dollars per car per year**.

Subtract the lost revenue (due to displaced payload) associated with the weights of the add-on aerodynamic devices to **obtain the Net Cost Reduction** (dollars per car per year).

Divide the cost of the retrofit aerodynamic device (dollars per car) by the Net Cost Reduction to obtain the ROI (years).

Lost Revenue due to Weight of Retrofit Aerodynamic Devices:

25 Assumptions: Freight Through Rate: \$18.00/net delivered ton mile Number of Trips per Year per Car: 35

Airflow Sciences Corporation

Calculation of ROI for Retrofit Aerodynamic Devices:

26 Assumptions: Diesel Fuel Cost: \$3.02/gallon Freight Through Rate: \$18.00/net delivered ton mile Number of Trips per Year per Car: 35

Airflow Sciences Corporation

AirFoil Design

Aerodynamic Design of AirFoils

The AirFoil geometry was developed using computational fluid dynamics modeling and boundary layer separation theory.

Power Reduction due to Addition of AirFoils

	Coal Car Configuration	Train Speed (miles/hour)	Power Required (HP)	Power Reduction Due	
	Without AirFoils	40	4,855	to Addition of AirFoils	
		60	14,076		
	With AirFoils	40	4,244	10% to 13%	
Impact o		60	12,014	14% to 15%	'rack

(100 Empty Coal Cars + 4 Locomotives)

Impact of AirFoils on Fuel Use: Unit Train Round Trip

- The projected fuel savings for a round trip unit train from coal mine to power plant (loaded cars on outbound leg and empty cars on return leg), varied from 5.4% to 8.1%, depending upon the coal car type, train speed histogram, and coal pile geometry.
- For other car, train speed, and coal pile combinations, most notably, flat-floor gondola cars, the payback period resulting from addition of AirFoils can be as short as 1.4 years.

AirFoil Durability

AirFoils do not impede car loading or unloading operations

AirFoil Durability Testing:

In-Service Evaluations; Photos of Car Loading Operation

Test cars have been in service for over 3 years.

AirFoils do not limit load capacity of cars

Airflow Sciences Corporation

- Coal Car Aerodynamics
- Impact of Candidate Aerodynamic Devices on Train Fuel Economy
- Conclusions and Recommendations

AirFoils Exterior (left) and Interior (above) Views

Coal Car Aerodynamics: Conclusions

- Aerodynamic drag represents over 70% of the tractive effort required to move an empty unit coal train and over 36% of the tractive effort required to move a loaded unit coal train.
- The energy required to transport the empty coal cars back to the mine requires between 60% and 80% of the energy required to transport the loaded cars from the mine to the power plant.
- Retrofit aerodynamic devices, including covers, baffles, smooth sides, AirFoils, and side skirts, are effective at reducing aerodynamic drag of both loaded and empty coal cars. Aerodynamic drag reductions can be as high as 44% - 50% for covers, and 17% - 20% for AirFoils.

Coal Car Aerodynamics: Conclusions

- Fuel savings per round trip (mine-to-power plant and power plant-tomine) resulting from addition of aerodynamic devices ranges from 2% to 20%, depending upon car type and train speed history. Flat covers and combinations of modifications produce the greatest drag reductions.
- Aerodynamic retrofit devices add weight to the car and impact the load capacity. Some devices, for example dome-style covers, can increase car weight by over 1.5 tons.
- The projected fuel savings for a round trip unit train equipped with AirFoils varies from 5.4% to 8.1%, depending upon the coal car type, train speed histogram, and coal pile geometry.

Coal Car Aerodynamics: Conclusions

- An economic evaluation indicates AirFoils offer the best return on investment for the aerodynamic devices evaluated. Payback periods range from a high of 4.8 years for low-speed routes to 1.4 years for higher speed routes.
- Reducing train fuel use impacts greenhouse gas emissions. Reducing GHG emissions may provide opportunities for carbon credits.
- Based on industry publications, the U.S. transportation of coal requires on the order of 1.5 billion gallons of diesel fuel each year. Thus, a 5% fuel savings would be 75 million gallons, or 2% of all Class I railroad fuel consumption.

James C. Paul, P.E.

Senior Engineer

Airflow Sciences Corporation

Western Region Office

Tel.: 831-624-8700

E-Mail: jpaul@airflowsciences.com

Steve Early

V.P. Engineering

Aero Transportation Products

Independence, Missouri

Tel.: 800-821-2376

E-Mail: <u>searly@aerotransportation.com</u>

