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Providing engineering services to industry since 1975 
Specializing in:

– Fluid Flow
– Heat Transfer
– Particulate Transport
– Combustion
– Computational Fluid Dynamics

About Airflow Sciences Corporation

– Physical Modeling
– Laboratory Testing
– Field Testing
– Mass Transfer
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Introduction

• Flow Modeling of Air Pollution Control Equipment
– Optimize Performance

• Velocity patterns, uniformity
• Chemical species injection
• Particulate injection
• Flyash drop-out/re-entrainment

– Avoid Maintenance Issues
• Erosion          

– Provide Input for Structural and Process Design
• Turning vane aerodynamic loads
• Pressure loss predictions for fan sizing

•

• Corrosion
•

• Pluggage
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Introduction

• Wet Flue Gas Desulfurization (FGD)
– New FGD systems, when retrofit to existing plants, 

face significant design challenges
• Long duct runs
• New or upgraded fans
• Flow uniformity goals for fans and FGD absorber

– Flow modeling is usually performed to support the 
FGD system design

– Physical Scale Modeling vs. CFD Modeling
• Physical scale modeling has long been industry standard
• CFD offers a more cost and time efficient alternative
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Modeling Methods – CFD Model

• Typical Model Set-up
– Includes internal features

• vanes, baffles, mixers

• pipe trusses, girders, gussets

• resistance zones, straighteners

• injection systems

– Hybrid mesh
• 5 million to 15 million cells typ.

• Handcraft/flow aligned hex 
dominate meshes used

– K-epsilon turbulence model
– Steady state solution

– Multiple operating conditions 
often simulated

Typical SCR Modeled in CFD
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Modeling Methods – Physical Model

• Methodology
– Maintain sufficient similarity to ensure test result 

applicability to full scale
– Geometric similarity is ensured by directly scaling 

the geometry from actual to model scale.
– Sufficient dynamic similarity is achieved by 

matching the velocity head from the actual model 
in the scale model

   Example:

• Full Scale Reynolds Number = 3,741,985
• Model Scale Reynolds Number = 383,840
• Turbulent regime maintained in scale model
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Modeling Methods – Physical Model

• Construction
– Typically 1/12th to 1/16th scale with accuracy of 

1/16th inch
– Made from clear acrylic
– Internal blockages >5% included

Typical
Physical Model
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Case Studies

• Cases 1-5 are part of studies done for two power 
companies to optimize complicated ductwork 
which occurred when new FGD absorbers were 
added to existing power stations.

• New ductwork included long runs, mergers, new 
fans and splits of flow.  Maintaining current 
performance with the addition of the new ductwork 
was imperative.

• In each case, velocity profiles throughout the 
system, as well as overall system pressure loss, 
was evaluated using CFD and Physical Scale 
Modeling.
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Velocity Distribution

• Objective: <15% RMS at all loads

Velocity (%RMS) at Various Loads

Case Load CFD Physical Difference (%)
1 Full 8.6 9 0.4
4A Full 3.2 3.6 0.4
4B Full 3.2 3.4 0.2
5 Full 7.4 6.6 0.8
1 Intermediate 8.8 8.6 0.2
2A Intermediate 3.6 5.2 1.6
2B Intermediate 4.2 4.5 0.3
2C Intermediate 4.6 3.2 1.4
3A Intermediate 6.5 9.6 3.1
3B Intermediate 7.1 8.1 1
3C Intermediate 6.7 7.8 1.1
1 Minimum 21.1 17.6 3.5
2B Minimum 4.8 3.9 0.9
2C Minimum 4.5 3.7 0.8
3B Minimum 11.4 9.9 1.5
3C Minimum 5.7 7.2 1.5
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Velocity Distribution – Case 3

      Physical Model   CFD Model
• Three units (700 MW, 700 MW, 350 MW) combine to feed 

three new booster fans (A, B, C)

A
B

C

A
B

C

FirstEnergy Sammis Plant – Units 5-7
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Velocity Distribution – Case 3

Physical Model

CFD Model

Case 3A
Normalized Velocity
at Booster Fan Inlet

• Similar gradient high 
to low velocity

Test Plane A
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Velocity Distribution - Case3

Case 3B:  
Normalized Velocity at 

Booster Fan Inlet
• Similar pattern of low 

velocity
Physical Model

CFD Model
Test Plane B
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Velocity Distribution – Case 3

Case 3C:  
Normalized Velocity at 

Booster Fan Inlet
• Similar low velocity area 

banded by higher 
velocitiesPhysical Model

CFD Model
Test Plane C
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Velocity Distribution

• Conclusions
– Average % RMS difference between modeling 

methods of 1.2%
– Flow patterns in normalized contour plots show 

similar trends between two modeling methods
– This indicates that results obtained by running a 

CFD model only would prove statistically and 
visually similar to those found if physical model 
was run as well.

– Both modeling methods are equally acceptable 
to design flow control devices that meet velocity 
uniformity goals
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Pressure Loss

• Objective – Minimize system pressure loss

System Pressure Loss (“H
2
O) at Various Loads

Case Load CFD Physical  Difference (“H2O)
1 Full 4.7 5.9 1.20
4 Full 2 1.9 0.10
5 Full 0.8 1 0.20
1 Intermediate 4.5 5.3 0.80
2 Intermediate 0.7 0.6 0.10
3 Intermediate 1.2 1.3 0.10
4 Intermediate 1.1 1.1 0.00
5 Intermediate 0.5 0.6 0.10
1 Minimum 4.2 4.3 0.10
2 Minimum 0.1 0.1 0.00
3 Minimum 0.4 0.3 0.10
4 Minimum 0.5 0.5 0.00
5 Minimum 0.2 0.3 0.10
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Pressure Loss – Case 3

Physical Model

Largest Total Pressure 
Drop

2.11 - 0.84
= 1.27 “ H2O

FirstEnergy Sammis Plant – Units 5-7

1.65 “ H2O

1.71 “ H2O

2.11 “ H2O

0.88
 “ H2O

0.9
 “ H2O

0.84
 “ H2O
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Pressure Loss – Case 3

CFD Model

Largest Total 

Pressure Drop

2.03 – 0.84

= 1.2 “H2O

1.86
 “ H2O

1.86 
“ H2O

2.03 
“ H2O

0.84
“ H2O

0.84 
“ H2O

0.84 
“ H2O

FirstEnergy Sammis Plant – Units 5-7
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Pressure Loss – Case 3

• Discussion of Case Study 3
– In both models, the flow path from Unit 5 to the 

booster fans showed highest pressure loss
– Overall difference in pressure drop 0.07 “H2O
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Pressure Loss

• Conclusions
– CFD and Physical Model results varied, on 

average, by 0.22 “H2O
– Correlation is independent of load
– Only one case had differences between CFD 

and physical scale model results of > 1”H2O 
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Conclusions

• Physical Modeling vs. CFD Modeling
– Both methods provide similar numerical and 

visual results when performed on FGD 
ductwork.

• Benefits of Using CFD Model
– Faster time to build model/easily modified
– Precise use of full scale plant conditions
– Design iterations completed more quickly
– Limitless ability to acquire and analyze data at 

various planes throughout model
– Multiple designs can be assessed in parallel on 

different computers
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