Worldwide Pollution Control Association

Ameren Seminar August 19–20, 2008 Effingham, IL

Vist our website at www.wpca.info

Understanding Gas Flow to Improve ESP Performance

Robert Mudry, P.E.

Vice President – Engineering Airflow Sciences Corporation rmudry@airflowsciences.com

WPCA / Ameren Seminar August 19-20, 2008

Outline

Introduction

- SP Fluid Flow Basics
- Assessing Flow Characteristics
- SP Flow Modeling
- Movies and Animations
- Questions

Introduction

Why Worry About Fluid Dynamics?

- Strong influence on performance of pollution control equipment (ESP, FF, SCR, LNB, FGD, etc.)
- Relatively low cost performance enhancements are possible
- Example Cases
- About Your Speaker

Example Cases

* How important is flow distribution?

Plant	Baseline Performance	After Flow Improvements
Mississippi Power Watson Unit 5	Full load opacity 25%	Full load opacity less than 5%
Dominion Generation Bremo Unit 4	Hot side ESP requires outage and wash every 2-3 months	Opacity reduced and duration between washes extended to annual outage
Essroc Materials Nazareth Unit 1	High opacity (14%) and high pressure loss cause high operating costs	Improved dust capture reduces opacity to 7%; system pressure loss reduced by 5 inches H_2O

About Your Speaker

- ✤ BSE, MSE Aerospace Engineering University of Michigan
- ✤ 19 years as fluid dynamics consultant to industry
- Involved in 500+ testing/modeling projects
- Institute of Clean Air Companies (ICAC) member
- WPCA Director and Treasurer
- Author of 10 power industry technical papers
- Registered Professional Engineer in four states

Outline

- Introduction
- Section 2 Constraints Section 2 Constraints and Section 2 Constrain
 - Gas Velocity Distribution
 - > Ductwork
 - Collection Region
 - Gas Flow Balance
 - Pressure Drop
 - Gas Temperature
 - Injection Systems
- Assessing Flow Characteristics
- Section Section Section 4 Constraints and Section 4 Constraints and
- Movies and Animations
- Questions

Gas Velocity Distribution – Ductwork

Ductwork Design Criteria

- Maintain minimum velocity requirements to avoid particle dropout
- Provide good flow characteristics to ESP
- Considerations
 - Horizontal surfaces
 - Cross sectional area
 - Bends
 - Structure

Airflow Sciences Corporation

Gas Velocity Distribution – Collection Region

- Uniform Flow Concept
 - ESP inlet & outlet planes
- Industry Standards
 - ICAC
 - % RMS Deviation

ICAC: 85% of velocities $\leq 1.15 * V_{avg}$ 99% of velocities $\leq 1.40 * V_{avg}$ Other: % RMS Deviation $\leq 15\%$ of V_{avg}

Gas Velocity Distribution – Collection Region

- Flow Control Methods
 - Vanes, baffles
 - Flow straighteners
 - Perforated plates

Gas Flow Balance

Industry Standards

Control Methods

ICAC: Flow within each chamber to be within $\pm 10\%$ of its theoretical share

Gas Temperature

Average temperature
Temperature stratification
Inleakage

Temperature

Injection Systems

- Gaseous injection
 - SO₃, NH₃, others
- Particulate injection
 - Activated carbon
 - Trona, SBS, lime, etc.

Activated Carbon Injection – Particle Tracking

Outline

- Introduction
- SP Fluid Flow Basics
- Assessing Flow Characteristics
 - Inspections
 - Field Testing
 - > Ductwork
 - Collection Region
- SP Flow Modeling
- Movies and Animations
- Questions

Inspections

- Ash Patterns
- Geometry Influence on Fluid Dynamics
- * Irregularities

Field Testing – Ductwork

- Velocity
- ✤ Temperature
- Pressure
- Particulate
- Resistivity
- Chemical Species

Field Testing – Collection Region

- Velocity Distribution
 - Cold flow conditions
 - Vane anemometer
 - Accuracy 1% in 3-10 ft/sec range
 - Lightweight, portable
 - Sensitive to flow angularity, turbulence, dust

Outline

Introduction

- SP Fluid Flow Basics
- Assessing Flow Characteristics
- Section Section Section 4 Constraints and Section 4 Constraints and
 - Physical Models
 - Computational Fluid Dynamics (CFD) Models
- Movies and Animations
- Questions

ESP Modeling – Physical Models

- Background
- Theory
- Simulation Parameters (how the model is set up)
- * Results Analysis (what you get from the model)

Physical Models – Background

- * Utilized for fluid flow analysis for a century ... or more?
- Applied to ESPs for decades
- Underlying principle is to reproduce fluid flow behavior in a controlled, laboratory environment

Physical Models – Theory

Key criteria is to generate "Similarity" between the scale model and the real-world object

- Geometric similarity
 - Accurate scale representation of geometry
 - Inclusion of all influencing geometry elements (typically those >4")
 - Selection of scale can be important

Fluid dynamic similarity

- > Precise Reynolds Number (Re) matching is not feasible
- General practice is to match full scale velocity but ensure that Re remains in the turbulent range throughout the model

$$\operatorname{Re} = \frac{\rho \operatorname{v} D_{h}}{\mu}$$

Physical Models – Simulation Parameters

SP geometry

- 1/8th to 1/16th scale representation
- Include features >4" in size

Flow conditions

- Scaled <u>air</u> flow rate (ambient temperature)
- Reproduce velocity profile at model inlet
- Simulated chemical injection
- Simulated particle tracking

Physical Models – Results Analysis

Quantitative data available at discrete measurement points

- Velocity magnitude, directionality
- Pressure (corrected to full scale)
- Chemical species concentrations

Integrated/reduced data

- Mass balance between ESP chambers
- Comparison to ICAC conditions or target velocity profiles
- Correlation to test data
- Qualitative data
 - Flow directionality (smoke, tufts)
 - Particle behavior, drop-out

Flow Modeling – Computational Fluid Dynamics (CFD)

- Background
- Theory
- Simulation Parameters (how the model is set up)
- Results Analysis (what you get from the model)

CFD – Background

 Developed in the aerospace industry c.1970 (with the advent of "high speed" computers)

- Applied to ESPs for 18+ years
- Underlying principle is to solve the first-principles equations governing fluid flow behavior using a computer

CFD – Theory

Control Volume Approach

- Divide the flow domain into distinct control volumes
- Solve the Navier-Stokes equations (Conservation of Mass, Momentum, Energy) in each control volume

CFD – **Simulation Parameters**

SP geometry

- Full scale representation
- Include features >4" in size, more detail if possible

Flow conditions

- Full scale gas flow rate
- Reproduce velocity profile at model inlet
- Reproduce temperature profile at model inlet
- Simulated chemical injection
- Simulated particle tracking

CFD – Results Analysis

Quantitative data available at all control volumes

- Velocity magnitude, directionality
- Temperature
- Pressure
- Turbulence
- Chemical species concentrations
- Particle trajectories
- Integrated/reduced data
 - Mass balance between ESP chambers
 - Comparison to ICAC conditions or target velocity profiles
 - Correlation to test data

Movies and Animations

Physical flow model movies

- Smoke flow
- Dust deposition
- CFD model animations
 - Particle tracking
 - Thermal mixing

Questions?

If you would like an electronic copy of this presentation, please contact Rob Mudry as follows: rmudry@airflowsciences.com Tel. 734-464-8900

