Gas Flow – How to Improve It to Enhance ESP, Boiler, FGD, SCR, SNCR Performance

> WPCA Seminar – Duke Energy September 3, 2008

> > Robert Mudry, P.E.

Vice President – Engineering Airflow Sciences Corporation rmudry@airflowsciences.com

Outline

- Introduction
- Flow Distribution Analysis Techniques
- Application to Boilers
- Application to Air Pollution Control Equipment
- Other Applications
- Conclusions
- Questions

Introduction

Why is Flow Distribution Important?

Performance

Heat Rate

Capacity

Pressure Loss

Combustion

Instrumentation

Environmental

Particulate Capture
NOx
NOx
SOx
Hg
SO3
CEMs

Maintenance Fouling Pluggage Erosion Corrosion Vibration

Outline

- Introduction
- Flow Distribution Analysis Techniques
 - Field Testing
 - Computational Fluid Dynamics (CFD)
 - Physical Flow Modeling
- Application to Boilers
- Application to APC Equipment
- Other Applications
- Conclusions
- Questions

Field Testing

- Velocity
- * Temperature
- Pressure
- Particulate

Chemical species

Field Testing

Computational Fluid Dynamics (CFD)

- Numerical simulation of flow
- Utilize high speed computers and sophisticated software
- Calculate flow properties
 - Velocity
 - Pressure
 - Temperature
 - Ammonia
 - Particle streamlines

Computational Fluid Dynamics (CFD)

Control Volume Approach

- Divide the flow domain into distinct control volumes
- Solve the Navier-Stokes equations (Conservation of Mass, Momentum, Energy) in each control volume

Physical Flow Modeling

- Lab representation of geometry
- Typical scale 1:8 to 1:16
- * "Cold flow" modeling
- Visualize flow with smoke
- Simulate ash deposition
- Measure flow properties
 - Velocity
 - Pressure
 - Tracer gas

Typical 1/12 scale physical model

- Turning vanes
- AIG w/static mixers
- Economizer bypass

• Economizer outlet

• LPA screen

Vanes Rectifier

Catalyst layers

Air heater

• Dampers

Airflow Sciences Corporation U

Outline

- Introduction
- Flow Distribution Analysis Techniques
- Application to Boilers
 - Primary / Secondary Air Systems
 - Furnace
 - SNCR
- Application to APC Equipment
- Other Applications
- Conclusions
- Questions

Primary Air / Coal Flow Balancing

- Optimize combustion
 - Balance PA flows
 - Equal coal flow per burner
 - Adequate fineness
- Modeling and testing

Windbox Flow Balancing

- Optimize combustion
 - Balance secondary air
 - Control flow entering burner (ram air effect)
- Modeling and testing

Furnace Combustion Optimization

- Typical goals
 - Reduce NOx
 - Minimize LOI
 - Improve heat transfer
 - Avoid corrosion
 - Decrease slagging

SNCR

Performance is influenced by

- Temperature distribution
- Velocity patterns
- Testing and modeling used to optimize performance

Outline

- Introduction
- Flow Distribution Analysis Techniques
- Application to Boilers
- Application to APC Equipment
 - ESP
 - FF
 - Mercury / SO3
 - SCR
 - FGD
- Other Applications
- Conclusions
- Questions

ESP Flow Optimization

- Flow distribution
- Flow balance between cells
- Pressure loss
- * Thermal mixing
- * Gas conditioning
- Ash deposition

ESP Velocity Distribution

- Output States Control Contr
- Industry standards

17

Gas Flow Balance

Industry standard +/- 10% deviation

Pressure Drop

- * General goal:
 - Minimize DP \mathbf{O}
- * Methods
 - Vanes
 - Duct contouring

AH

Total Pressure (inches of water) Area management

ESP

ID

Fan

Ductwork redesign saves 2.1 inches H₂O over baseline

Flow

ESP Temperature Stratification

ESP Temperature Stratification

ESP Gas Conditioning

- Modify ash resistivity
 - SO₃, ammonia, others
- * Alter gas density, viscosity
 - Humidification

Temperature

Humidification gone awry

Ash Deposition

Drop outRe-entrainment

Fabric Filter Flow Modeling

- Uniform velocity distribution and equal balance between compartments
- Pressure loss
- Avoid bag erosion
- Ash deposition

Mercury / SO3 Reduction

Injection upstream of baghouse or ESP

- Activated carbon
- Lime, Trona, SBS, etc.
- Uniform injection
- Maximize residence time

SCR Flow Optimization

- Velocity distribution
- * Thermal mixing
- NOx profile / mixing
- Ammonia injection
- Pressure loss
- Large particle ash (LPA)
 or "popcorn ash" capture
- Ash deposition

SCR Velocity Distribution

Uniform velocity profile

- At ammonia injection grid
- At catalyst inlet
- At air heater inlet
- * Minimal angularity
 - At catalyst inlet

SCR Thermal Mixing

- SCR low load operation with economizer bypass
- CFD model to design mixer using full scale operating conditions
- Physical model tracer gas tests to confirm design

Without mixer, $\Delta T = \pm 83 \text{ °F}$ With mixer, $\Delta T = \pm 15 \text{ °F}$

Airflow Sciences Corporation

SCR Ammonia Injection

- Desire uniform NH3-to-NOx ratio at catalyst
- Tracer gas used to represent flows in physical model

Track gas species in CFD

SCR Large Particle Ash Capture

- Catalyst openings for coal-fired plants are smaller than LPA particles
- Once LPA becomes "wedged" into a cell, fine ash builds up as well
 - Hard to clean
 - Get dunes of ash on top layer catalyst

LPA System Design – Key Points
Capture LPA in hoppers of adequate size
LPA screens have become standard practice
Ash deflection baffles also useful

Screen erosion and pluggage remain issues

Ash Deposition

- Duct floorsTurning vanes
- Catalyst

FGD Flow Modeling

- Flow distribution
- Water droplet behavior
- Pressure loss
- Ash deposition

FGD Flow Modeling

Outline

- Introduction
- Flow Modeling Methods
- Application to Boilers
- Application to APC Equipment
- Other Applications
- Conclusions
- Questions

Power Industry

- Fans
- Ducts
- Pulverizers
- Windboxes
- Furnaces
- ✤ Air Heaters
- Stacks
- Turbines
- Condensers
- HRSGs

- Spacecraft
- * Aircraft
- * Missiles
- * Engines

Vehicle Design

- Aerodynamics
- HVAC, cooling systems
- Engine components

Airflow Sciences Corporation

Conclusions

- * Gas flow patterns have significant impact on the performance of power plant equipment
- Analysis and design tools include field testing and flow modeling
- * CFD and physical modeling are applied to a wide range of equipment "from the fan to the stack"

If you would like an electronic copy of this presentation, please contact Rob Mudry as follows: rmudry@airflowsciences.com Tel. 734-525-0300

