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Example CasesExample Cases

v How important is flow distribution?vv How important is flow distribution?How important is flow distribution?

Improved dust capture Improved dust capture 
reduces opacity to 7%; reduces opacity to 7%; 
system pressure loss reduced system pressure loss reduced 
by 5 inches Hby 5 inches H22OO

High opacity (14%) High opacity (14%) 
and high pressure and high pressure 
loss cause high loss cause high 
operating costsoperating costs

Essroc Essroc Materials Materials 
Nazareth Unit 1Nazareth Unit 1

23% reduction in particulate 23% reduction in particulate 
emissions allows load emissions allows load 
increase of 150 MW per unitincrease of 150 MW per unit

High opacity causes High opacity causes 
240 MW 240 MW derate derate per per 
unitunit

Southern California Southern California 
Edison Mohave Edison Mohave 
Units 1&2Units 1&2

Full load opacity less than 5%Full load opacity less than 5%Full load opacity 25%Full load opacity 25%Mississippi Power Mississippi Power 
Watson Unit 5Watson Unit 5

After Flow ImprovementsAfter Flow ImprovementsBaseline PerformanceBaseline PerformancePlantPlant
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vv Uniform Flow ConceptUniform Flow Concept
•• ESP inlet & outlet planesESP inlet & outlet planes

vv Industry StandardsIndustry Standards
•• ICACICAC

•• % RMS Deviation% RMS Deviation

vv “Skewed” Flow “Skewed” Flow 
ConceptsConcepts

ICAC: 85% of velocities � 1.15 * Vavg
99% of velocities � 1.40 * Vavg

Other: % RMS Deviation � 15% of Vavg
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•• Flow Flow straightenersstraighteners

•• Perforated platesPerforated plates

Gas Velocity Distribution Gas Velocity Distribution ––
Collection RegionCollection Region
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Gas Flow BalanceGas Flow Balance

v Industry Standards

v Control Methods

vv Industry StandardsIndustry Standards

vv Control MethodsControl Methods

21 %

35 %

26 %

18 %

Percent of total mass 
flow through each 
chamber

ICAC: Flow within each chamber to be
within ±10% of its theoretical share
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vv General goal: General goal: 
•• Minimize DPMinimize DP

vv MethodsMethods
•• VanesVanes

•• Duct contouringDuct contouring

•• Area managementArea management

Flow

Ductwork redesign saves  
2.1 inches H2O over baseline
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Gas ConditioningGas Conditioning

v Modify ash resistivity
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vv Modify ash Modify ash resistivityresistivity
•• SOSO33, ammonia, others, ammonia, others

vv Alter gas density, viscosityAlter gas density, viscosity
•• HumidificationHumidification

Low SO3 
Concentration

High SO3
Concentration

SO3 Concentration

Humidification principle:
m = * v * A

m, A = constant
= f (T)

If T is reduced, increases
Thus v decreases when water is added

Temperature

R
es
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tiv

ity

5 ppm SO3
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v Key criteria is to generate “Similarity” between the 
scale model and the real-world object
• Geometric similarity

½ Accurate scale representation of geometry

½ Inclusion of all influencing geometry elements (typically those >4”)

½ Selection of scale can be important

• Fluid dynamic similarity
½ Precise Reynolds Number (Re) matching is not feasible

½ General practice is to match full scale velocity but ensure that Re remains 
in the turbulent range throughout the model

vv Key criteria is to generate “Similarity” between the Key criteria is to generate “Similarity” between the 
scale model and the realscale model and the real--world objectworld object
•• Geometric similarityGeometric similarity

½½ Accurate scale representation of geometryAccurate scale representation of geometry

½½ Inclusion of all influencing geometry elements (typically those Inclusion of all influencing geometry elements (typically those >4”)>4”)

½½ Selection of scale can be importantSelection of scale can be important

•• Fluid dynamic similarityFluid dynamic similarity
½½ Precise Reynolds Number (Re) matching is not feasiblePrecise Reynolds Number (Re) matching is not feasible

½½ General practice is to match full scale velocity but ensure thatGeneral practice is to match full scale velocity but ensure that Re remains Re remains 
in the turbulent range throughout the modelin the turbulent range throughout the model

Re =
v Dh
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½½ Include features >4” in sizeInclude features >4” in size

vv Flow conditionsFlow conditions
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temperature)temperature)

½½ Reproduce velocity profile at Reproduce velocity profile at 
model inletmodel inlet

½½ Simulated chemical injectionSimulated chemical injection

½½ Simulated particle trackingSimulated particle tracking
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• Correlation to test data

v Qualitative data
• Flow directionality (smoke, tufts)
• Particle behavior, drop-out
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v Developed in the aerospace industry c.1970 (with the advent 
of “high speed” computers)

v Applied to ESPs for 15+ years

v Underlying principle is to solve the first-principles 
equations governing fluid flow behavior using a computer

vv Developed in the aerospace industry c.1970 (with the advent Developed in the aerospace industry c.1970 (with the advent 
of “high speed” computers)of “high speed” computers)

vv Applied to Applied to ESPs ESPs for 15+ yearsfor 15+ years

vv Underlying principle is to solve the firstUnderlying principle is to solve the first--principles principles 
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CFD CFD –– TheoryTheory

v Control Volume Approach
• Divide the flow domain into distinct control volumes

• Solve the Navier-Stokes equations (Conservation of Mass, 
Momentum, Energy) in each control volume

vv Control Volume ApproachControl Volume Approach
•• Divide the flow domain into distinct control volumesDivide the flow domain into distinct control volumes

•• Solve the Solve the NavierNavier--Stokes equations (Conservation of Mass, Stokes equations (Conservation of Mass, 
Momentum, Energy) in each control volumeMomentum, Energy) in each control volume

Inflow Outflow

Control Volume 
or “Cell”

ESP model with 
850,000 cells
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capture performance degrades
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vv Southeast U.S.Southeast U.S.

vv 185 MW unit185 MW unit

vv ESP cleaning required every 2ESP cleaning required every 2--3 months to operate 3 months to operate 
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vv Unit Unit derate derate and eventual forced outage as ESP and eventual forced outage as ESP 
capture performance degradescapture performance degrades
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distribution within collection region

v Solution: Expand flow more efficiently in the ESP 
inlet ductwork

v Result: ESP operates for 12 months without 
cleaning; no derates due to opacity
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vv Solution: Expand flow more efficiently in the ESP Solution: Expand flow more efficiently in the ESP 
inlet ductworkinlet ductwork

vv Result: ESP operates for 12 months without Result: ESP operates for 12 months without 
cleaning; no cleaning; no derates derates due to opacitydue to opacity
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vv Cold side ESPCold side ESP

vv Western U.S.Western U.S.

vv Two 790 MW unitsTwo 790 MW units

vv Undersized Undersized ESPsESPs

vv Both units regularly Both units regularly derated derated by 240 MW to operate by 240 MW to operate 
within opacity limitswithin opacity limits
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MW per unitMW per unit
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Gas Conditioning System DesignGas Conditioning System Design
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buildup, elimination of buildup, elimination of 
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Questions?Questions?

If you would like an electronic copy of this 
presentation, please contact Rob Mudry as follows:
rmudry@airflowsciences.com
Tel. 734-464-8900


