ESP Gas Flow Fundamentals

Robert Mudry, P.E.

Vice President – Engineering Airflow Sciences Corporation rmudry@airflowsciences.com

ESP/FF Round Table & Exposition

August 12, 2002

Outline

- Introduction
- ESP Fluid Flow Basics
- Assessing Flow Characteristics
- SP Flow Modeling
- Case Studies
- Questions

Introduction

Why Worry About Fluid Dynamics?

- Strong influence on performance of pollution control equipment (ESP, FF, SCR, LNB, Scrubber, etc.)
- Relatively low cost performance enhancements are possible
- Example Cases
- About Your Speaker

Example Cases

How important is flow distribution?

Plant	Baseline Performance	After Flow Improvements
Mississippi Power Watson Unit 5	Full load opacity 25%	Full load opacity less than 5%
Southern California Edison Mohave Units 1&2	High opacity causes 240 MW derate per unit	23% reduction in particulate emissions allows load increase of 150 MW per unit
Essroc Materials Nazareth Unit 1	High opacity (14%) and high pressure loss cause high operating costs	Improved dust capture reduces opacity to 7%; system pressure loss reduced by 5 inches H_2O

About Your Speaker

- BSE, MSE Aerospace Engineering University of Michigan
- 13 years as fluid dynamics consultant to industry
- Involved in 300+ testing/modeling projects
- Institute of Clean Air Companies (ICAC) member
- Author of 6 power industry technical papers
- Registered Professional Engineer MI, NC, VA

5

Outline

- Introduction
- ESP Fluid Flow Basics
 - Gas Velocity Distribution
 - > Ductwork
 - Collection Region
 - Gas Flow Balance
 - Pressure Drop
 - Gas Temperature
 - Gas Conditioning
- Assessing Flow Characteristics
- ESP Flow Modeling
- Case Studies
- Questions

Gas Velocity Distribution – Ductwork

- Ductwork Design Criteria
 - Maintain minimum velocity requirements to avoid particle dropout
 - Provide good flow characteristics to ESP
- Considerations
 - Horizontal surfaces
 - Cross sectional area
 - Bends
 - Structure

Gas Velocity Distribution – Collection Region

- Uniform Flow Concept
 - ESP inlet & outlet planes
- Industry Standards
 - ICAC
 - % RMS Deviation
- "Skewed" FlowConcepts

Gas Velocity Distribution – Collection Region

- Flow Control Methods
 - Vanes, baffles
 - Flow straighteners
 - Perforated plates

Gas Flow Balance

Industry Standards

Control Methods

ICAC: Flow within each chamber to be within $\pm 10\%$ of its theoretical share

Pressure Drop

- ♦ General goal:
 - Minimize DP
- Methods

 - Duct contouring

AH

Minimize DP ethods Vanes Duct contouring Area management

ESP

ID

Fan

2.1 inches H₂O over baseline

Flow

Gas Temperature

- Average temperature
- Temperature stratification
- Inleakage

Temperature

Gas Conditioning

- Modify ash resistivity
 - SO₃, ammonia, others
- Alter gas density, viscosity
 - Humidification

Outline

- Introduction
- ESP Fluid Flow Basics
- Assessing Flow Characteristics
 - Inspections
 - Field Testing
 - > Ductwork
 - Collection Region
- ESP Flow Modeling
- Case Studies
- Questions

Inspections

- Ash Patterns
- Geometry Influence on Fluid Dynamics
- Irregularities

100

Field Testing – Ductwork

- Velocity
- Temperature
- Pressure
- Particulate
- Resistivity
- Chemical Species

Field Testing – Collection Region

- Velocity Distribution
 - Cold flow conditions
 - Vane anemometer
 - Accuracy 1% in 3-10 ft/sec range
 - Lightweight, portable
 - Sensitive to flow angularity, turbulence, dust

Outline

- Introduction
- ESP Fluid Flow Basics
- Assessing Flow Characteristics
- Section Section Section 4 Constraints and Section 2 Constraints and
 - Physical Models
 - Computational Fluid Dynamics (CFD) Models
- Case Studies
- Questions

ESP Modeling – Physical Models

- Background
- Theory
- Simulation Parameters (how the model is set up)
- Results Analysis (what you get from the model)

Physical Models – Background

- Utilized for fluid flow analysis for a century ... or more?
- Applied to ESPs for decades
- Underlying principle is to reproduce fluid flow behavior in a controlled, laboratory environment

Physical Models – Theory

- Key criteria is to generate "Similarity" between the scale model and the real-world object
 - Geometric similarity
 - Accurate scale representation of geometry
 - Inclusion of all influencing geometry elements (typically those >4")
 - Selection of scale can be important

Fluid dynamic similarity

- Precise Reynolds Number (Re) matching is not feasible
- General practice is to match full scale velocity but ensure that Re remains in the turbulent range throughout the model

$$\operatorname{Re} = \frac{\rho \, v \, D_{h}}{\mu}$$

Physical Models – Simulation Parameters

ESP geometry

- 1/8th to 1/16th scale representation
- Include features >4" in size

Flow conditions

- Scaled <u>air</u> flow rate (ambient temperature)
- Reproduce velocity profile at model inlet
- Simulated chemical injection
- Simulated particle tracking

Physical Models – Results Analysis

Quantitative data available at discrete measurement points

- Velocity magnitude, directionality
- Pressure (corrected to full scale)
- Chemical species concentrations
- Integrated/reduced data
 - Mass balance between ESP chambers
 - Comparison to ICAC conditions or target velocity profiles
 - Correlation to test data
- Qualitative data
 - Flow directionality (smoke, tufts)
 - Particle behavior, drop-out

Flow Modeling –

Computational Fluid Dynamics (CFD)

- Background
- Theory
- Simulation Parameters (how the model is set up)
- Results Analysis (what you get from the model)

CFD – Background

- Developed in the aerospace industry c.1970 (with the advent) of "high speed" computers)
- ✤ Applied to ESPs for 15+ years
- Underlying principle is to solve the first-principles equations governing fluid flow behavior using a computer

CFD – Theory

- Control Volume Approach
 - Divide the flow domain into distinct control volumes
 - Solve the Navier-Stokes equations (Conservation of Mass, Momentum, Energy) in each control volume

CFD – Simulation Parameters

ESP geometry

- Full scale representation
- Include features >4" in size, more detail if possible

Flow conditions

- > Full scale gas flow rate
- Reproduce velocity profile at model inlet
- Reproduce temperature profile at model inlet
- Simulated chemical injection
- Simulated particle tracking

CFD – Results Analysis

Quantitative data available at all control volumes

- Velocity magnitude, directionality
- Temperature
- Pressure
- Turbulence
- Chemical species concentrations
- Particle trajectories

- Integrated/reduced data
 - Mass balance between ESP chambers
 - Comparison to ICAC conditions or target velocity profiles
 - Correlation to test data

Outline

- Introduction
- SP Fluid Flow Basics
- Assessing Flow Characteristics
- SP Flow Modeling
- Case Studies
 - Reducing Forced Outages for Hot Side ESP Cleaning
 - Improving Capture Efficiency to Avoid MW Derates
 - Gas Conditioning System Design
- Questions

Reducing Forced Outages for ESP Cleaning

- Hot side ESP
- Southeast U.S.
- ✤ 185 MW unit

- Section Sec
- Unit derate and eventual forced outage as ESP capture performance degrades

Reducing Forced Outages for ESP Cleaning

- Known problem: Poor side-to-side gas velocity distribution within collection region
- Solution: Expand flow more efficiently in the ESP inlet ductwork
- Result: ESP operates for 12 months without cleaning; no derates due to opacity

Avoiding MW Derates

- Cold side ESP
- Western U.S.
- Two 790 MW units
- Undersized ESPs

South units regularly derated by 240 MW to operate within opacity limits

Avoiding MW Derates

- Baseline CFD modeling indicates poor gas velocity distribution within collection region
- Solution: Redesign flow control devices (turning vanes, perforated plates)
- Results
 - 23% reduction in particulate emissions
 - Output increased by 150 MW per unit

Gas Conditioning System Design

- Cold side ESP
- Midwest U.S.
- ♦ 422 MW unit

- Humidification system injects water into ESP inlet ductwork
- Severe buildup on internal structure causes forced outages and high maintenance costs

Gas Conditioning System Design

- Baseline CFD modeling indicates water droplets do not evaporate completely before impacting structure
- Solution: Redesign spray nozzles and internal structure
- Results: Minimal material buildup, elimination of forced outages

If you would like an electronic copy of this presentation, please contact Rob Mudry as follows: rmudry@airflowsciences.com Tel. 734-464-8900

