Worldwide Pollution Control Association

WPCA/TVA Coal & Gas Seminar August 24, 2016

Visit our website at www.wpca.info

Mixing Issues and Lessons Learned

Robert Mudry, P.E.

Airflow Sciences Corporation rmudry@airflowsciences.com 734-525-0300

From Webster's Dictionary

Mix (verb):

(1): to combine or blend into one mass
(2): to combine with another
(3): to bring into close association
(4): to form by mixing components
(5): to confuse -- often used with *up*

How Do You Mix?

- Control the flow streams at the merger location
 - Multi-point injection
 - Layered injection
- Churn up the flow after the merger
 - Induce turbulence
 - Create shear forces
 - Generate swirl or vortices

Ammonia-to-NOx Ratio

- Ammonia-to-NOx ratio at the catalyst inlet plane should be "uniform"
- Typical goal is %RMS < 5%</p>
- Allows optimal NOx reduction with minimum NH3 slip

NOx Stratification

NOx is not necessarily uniform at the boiler exit; it is a function of

- Boiler design
- Burner air flow balance
- Coal pipe balance
- Mills out-of-service
- Solutions
 - Mix the NOx prior to the NH3 injection
 - Mix the NOx and the NH3
 - Tune the NH3 to the NOx profile

Ammonia Injection

 Two basic strategies are used for ammonia injection in SCRs

- Dense grid of injection pipes
- Coarse grid of injection pipes with mixers

Airflow Sciences Corporation

Dense Grid Ammonia Injection

- Many injection lances with multiple nozzles per lance
 - Depending on SCR size, could have 50-200 lances per reactor inlet duct
 - Typically 6-10 nozzles per lance
 - Hundreds of discrete injection points
- * Lances grouped into zones for tuning

Coarse Grid Ammonia Injection

Few injection lances with multiple nozzles per lance

- Depending on SCR size, could have 5-30 lances per reactor
- Typically 6-10 injection nozzles per lance
- Lances located immediately upstream of a static mixer
- Often multiple stages of static mixers
- Tuning possible but not as straight-forward due to purposeful creation of turbulence

Shear Mixer

Shear Mixer

10

Airflow Sciences Corporation

Shear Mixer

Swirl - Shear Mixer

Economizer outlet, compilation photo of mixer plates (flow is into page)

Airflow Sciences Corporation

Airflow Sciences Corporation $\overline{\mathcal{U}}$

Airflow Sciences Corporation

Vortex - Shear Mixer

Mixer Issues - Erosion

Airflow Sciences Corporation

Mixer Issues - Erosion

Internal truss erosion downstream of mixers (zoomed view at right)

Mixer Issues - Erosion

Duct roof erosion downstream of mixers, near unit centerline (flow is left to right) (zoomed view at right; repair patches evident)

Mixers– Pressure Drop

	Location	Total Pressure Loss (inH2O)	Total Pressure Loss (mmH2O)
А	Evaporator Outlet	0	0
В	Upstream AIG	-0.03	-0.8
С	Downstream AIG	-0.75	-19.1
D	Upstream SCR Duct Expansion	-0.95	-24.1
E	Downstream SCR Duct Expansion	-1.07	-27.1
F	Upstream Flow Rectifier	-1.23	-31.2
G	Upstream (Future) 1st Catalyst Layer	-1.26	-32.1
Н	Upstream 2nd Catalyst Layer	-1.29	-32.7
I	Upstream 3rd Catalyst Layer	-2.30	-58.3
J	Downstream 3rd Catalyst Layer	-3.29	-83.7
К	Economizer Inlet	-3.31	-84.0
A-K	Total DP, Evaporator Outlet to Economizer Inlet	3.31	84.0
A-K	Total DP, Excluding Catalyst Layers	1.27	32.3

DP = 0.72 IWC

Typical mixer stage DP = 0.3 to 0.8 IWC

- Many power plant systems require adequate mixing of flow streams to perform optimally
- For SCRs: NH3, NOx, and temperature are key players
- For other APC equipment: chemical species, sorbent distribution, and temperature are important
- For combustion: air and coal balancing are key
- Mixer design involves many competing criteria which must be understood and optimized

