Dryer Computer Simulations

Andrew L. Banka, P.E. Airflow Sciences Corporation

USDA/CARD Drying Workshop Worcester Polytechnic Institute in Worcester, Massachusetts

25 June 2022

\vec{v} Airflow Sciences Corporation

Agenda

- Why use CFD for dryer design/improvements?
- Case Studies
 - Gelatin dryer (improvements to dryer equipment)
 - Pistachio Roasting (assessment of operational conditions)

ISDA

ILLINOIS

Gelatin Drying Description/Challenges

- Concentrated material extrude into "noodles" on dryer bed
- Melting temperature rises with falling moisture content
- 12 Zone dryer with cascading air flow
- Increased temperature in each successive zone
- Non-uniform flow leads to non-uniform drying
- Exceeding allowable temperature of least dry material can lead to melt through

MeltingTemperature vs %MC

Dryer Geometry (Zones 1-4) Upflow in Zones 1, 2, and 4 ٠ Downflow in Zone 3 • Fresh air supplied to Zones 1 and 3 ۲ Steam heating coils between • each pair of zones Flow control devices • Coils (Yellow) to smooth flow Fans (Green) Turning Vanes (Blue)

Gelatin Dryer

In up flow zones, perforated plate is unable to smooth the flow, leading to flow non-uniformities through the gelatin

In downflow zones, the proximity of the fan causes flow to be skewed toward the fan side

Both variations lead to nonuniform drying

ILLINOIS

Gelatin Dryer

Variations in velocity through product bed

Gelatin Dryer Modified Design

Model Geometry - Isometric View

USDA

ILLINOIS

Gelatin Dryer - Design

In upflow zones, two sets of vanes distribute the flow across the product bed:

- At entrance to region under product belt
- Below product belt to turn flow upward

In downflow zone, one set of vanes below product belt decouples product belt from fan suction low pressure zone

Gelatin Dryer

Uniformity of velocity through product bed greatly improved

Vertical Velocity - Belt Surface - Zones 2 & 4 - Top View

Vertical Velocity - Belt Surface - Downward Flow (Zone 3) - Top View

Vertical Velocity - Belt Surface - Zone 1 - Top View

2.40 3.60 4.80 > 6.00 0.00 1.20 Normal Velocity (ft/s)

Zone 2

0.00

1.20

-3.60 -2.40 -6.00 -4.80 -1.20 0.00 Normal Velocity (ft/s)

4.80

> 6.00

2.40 3.60

Normal Velocity (ft/s)

Impact of Design Modifications

- Due to velocity variations and resultant drying variations, operational points had to be set to accommodate the *slowest* drying portion of the product bed.
- This led to the dryer being the slowest unit operation on the production line, limiting overall production rate.
- Following installation of the recommended modifications, the dryer became this fastest unit operation, increasing overall production.
- Other plant operations could then be improved to take advantage of the increased capacity of the dryer.

Pistachio Roasting Goals

- Reduce moisture content
- Pasteurize nuts
- Maintain desirable color and texture

Roasting Process

- Nuts are brined and the loaded into a bed dryer
- Three zones (downflow, upflow, upflow)
- Independent temperature control for Zones 1 and 2
- Zone three for cooling
- Deep bed
- Control over residence time

IILLINOIS

Multi-Scale Modeling Approach

- Scale of process equipment is much larger than product being processed
- Information desired on both large and small scales
- Allows resolution of variations across equipment and within product
- Interaction between product and equipment is fully coupled

- Each cell in the CFD model that contains product includes a separate product model
- Heat and mass are exchanged between process air and product
- Product impacts air properties at downstream locations
- Motion of the product through dryer domain can be included

Product Model

Pistachio Nut Conceptual Model

- Outer-Shell Air/Hull-Gap Inner Kernel
- Three basic geometries
 - o Sphere
 - \circ Rod
 - o Plate
- 1-D shell model used (lumped capacity model also possible)
- Each shell has its own thermal properties
- Temperature, moisture content, and other parameters tracked for each shell layer

USDA

Simulation Overview

- Deep product bed promotes flow uniformity
- Temperature/flow variations not considered/included
- Model reduced to one section of belt
- Follow product through dryer with transient simulation
- Product bed represented as porous zone

Test condition simulation results - Zone 1 (upflow)

ILLINOIS

Test condition simulation results - Zone 2 (downflow)

Velocity Magnitude - Zone 2

Time = 960 sec.

Time = 1800 sec.

Time = 960 sec.

Time = 960 sec.

Average Nut Temperature - Zone 2

Time = 1380 sec.

210.0

240.0

Time = 1380 sec.

150.0 180.0

Temperature (°F)

120.0

90.0

Air Temperature - Zone 2

Test condition simulation results

Time (sec)

Time (sec)

USDA

Modeling Pasteurization

Journal of Applied Microbiology 2005, 98, 406-417

doi:10.1111/j.1365-2672.2004.02487.x

Generating microbial survival curves during thermal processing in real time

M. Peleg, M.D. Normand and M.G. Corradini

Department of Food Science, Chenoweth Laboratory, University of Massachusetts, Amherst, MA, USA

2004/0520: received 7 May 2004, revised 5 August 2004 and accepted 24 August 2004

$$\log_{10} S(t) = -b(T)t^{n(T)}$$

$$b(T) = \log[1 + e^{(T-90)/10}]$$

$$n(T) = 0.7 / [1 + e^{(T-100)/10}]$$

Using research of Peleg, the simulation results are used to estimate the log-kill for pathogens

Equations for b(T) and n(T) fit based on challenge test data

Pasteurization Results

- Time temperature history of each location within dryer applied to equation to determine log-kill
- Due to variation in processing conditions, effectiveness varies
- Model can be used to assess different operating conditions

Run 105

Final Predicted log-Kill Distribution

ILLINOIS

Effect of Zone Temperatures on Pasteurization Simulation Runs

Time (sec)

Effect of Zone Temperatures on Pasteurization

Time (sec)

Multi-Scale Modeling Summary

There are several advantages combining models of both product and equipment into one simulation

- The interactions between the equipment and the product are revealed (real world conditions)
- Product variations that result from equipment design are identified and quantified
- The effect of changes to operating conditions can be evaluated
- The product model can be expanded to assess changes beyond temperature and moisture (pasteurization, browning, case-hardening, etc.)

Questions?

USDA

CARD

PI

For more information contact:

Andrew Banka abanka@airflowsciences.com

