# Flow Modeling: Boiler and AQCS with dual fuel burning

Robert Mudry, P.E. Airflow Sciences Corporation

WPCA/Duke Co-Firing Seminar Spartanburg, SC October 2, 2019



# Agenda

- Flow Modeling Basics
- Applications
  - Boiler performance, heat rate
  - AQCS optimization
  - Gas leak detection





#### **About Airflow Sciences**

 Expertise is with fluid dynamic engineering, heat transfer, thermodynamics, and combustion

- In business since 1975
- Consulting Engineering Services
  - CFD simulation
  - Laboratory prototype fabrication/testing
  - Wind tunnel testing
  - Field testing
- CFD Software Development
- Flow Test Equipment
- Flow Calibration Lab











# About your speaker

- Flow modeling and testing for 31 years
- Entire career at Airflow Sciences (started as summer intern)
- Rocket scientist at heart degree is in aerospace engineering
- Focus on power industry, optimization of boilers and AQCS
- Occasional work in auto, aerospace, food processing, and other industries
- Father of 4, husband of 1
- Decent volleyball coach, mediocre golfer







#### Flow Modeling Basics

#### Physical flow model

- Scale representation of actual geometry
- Use Typical scale 1:8 to 1:16
- o "Cold flow" modeling
- Visualize flow with smoke
- Simulate ash deposition
- Measure flow properties
- Velocity
- Pressure
- Species and temperature mixing





# Flow Modeling Basics

Computational Fluid Dynamics (CFD)

- Numerical simulation of flow
- Utilize high speed computers and sophisticated software
- Calculate flow properties
- Velocity
- Pressure
- Temperature
- Chemical species tracking
- Reactions and combustion
- Particle streamlines





## Flow Modeling Applications

- Modeling can optimize equipment "Fan-to-Stack" and beyond
  - Fans and ductwork
  - PA/SA/OFA/fuel balance
  - Furnace combustion, NOx, slagging
  - Backpass heat transfer, erosion
  - SCR
  - Air heater
  - Sorbent injection
  - ESP/PJFF
  - o FGD
  - Stack
  - Dispersion, plumes
  - Water, steam, condenser





#### Fans and Ductwork

Velocity patterns, erosion

Pressure drop

Ash accumulation







# PA/SA/OFA/Fuel Balancing

- Optimize combustion
  - Balance PA flows
  - Equal coal flow per burner





Furnace Combustion, NOx, Slagging

- Coal, gas, or dual firing
  - Reduce NOx
  - Minimize LOI
  - Improve heat transfer
  - Avoid corrosion
  - Decrease slagging
  - SNCR





# Backpass, Heat Transfer, Erosion, Economizer

- Gas and particulate flow profiles
- Ash impacts on tubes and walls











#### **SCR Flow Modeling**

#### Performance goals for SCRs:

- Uniform ammonia-to-NOx ratio
- Uniform velocity at AIG
- Uniform velocity at the catalyst
- Vertical flow entering catalyst
- Uniform temperature at catalyst
- Minimize pressure loss
- Capture LPA with screen/baffles
- Minimize pluggage potential
- Minimize erosion potential







# **SCR Flow Modeling**







# **SCR Flow Modeling**





# **SCR Ammonia Mixing**







#### **Air Heaters**

- Flow and temperature distribution
- Pluggage
  - Particulate
  - ABS
  - Inleakage





# Sorbent Injection

- Injection upstream of baghouse or ESP
  - Activated carbon
  - o Lime, Trona, SBS, etc.
- Uniform injection
- Mixing
- Maximize residence time







#### ESP / PJFF

- Flow uniformity
  - ICAC flow uniformity guidelines
  - Flow balance
  - Velocity distribution
- Pressure loss





#### ESP / PJFF

- Flow uniformity
  - ICAC flow uniformity guidelines
  - Flow balance
  - Velocity distribution
- Pressure loss



19





Flow uniformity

Pressure loss

Droplet patterns

Spray pull-back



#### SDA

- Flow uniformity
- Pressure loss
- Flow balance
- Deposition









#### **Stacks**

- Flow distribution at CEMs
- Droplet collection
- Plume downwash







#### Wet Stacks









#### **Leak Detection**

 Natural gas firing at former coal plants creates new safety hazards

CFD modeling of potential leaks, monitoring,

and ventilation options can be part of the

design solution



#### **Leak Detection**

Gas leak tracking





## Summary

- CFD and physical flow modeling are proven engineering tools to analyze flow-related issues and equipment
- Applicable to coal, gas, and co-firing plants
- Can be used to optimize air, gas, particulate, and liquid flows "from the fan to the stack"

#### **Questions & Contact Information**

Robert Mudry, P.E.

734-525-0300 x202

rmudry@airflowsciences.com

www.airflowsciences.com

